Yang og Yin

Yang og Yin er gamle kinesiske begreper for grunnkreftene som skaper orden i naturen og i menneskene. De to elementene utfyller hverandre gjensidig. Det finnes mange slike par av tilsynelatende motsetninger: natt og dag, hånd og hanske, nøkkel og lås. Immunologien har sin egen versjon av Yang og Yin, nemlig antistoff og antigen. Les videre

Spørretime

For noen dager siden fikk jeg mail fra medisinstudent Espen. Det nærmet seg eksamen i ernæring. De var flere som hadde noen spørsmål om cøliaki. Kunne de få treffe meg? Så for to dager siden dukket Espen og Pål opp på kontoret.

Spørsmålet var følgende: Hvorfor slutter kroppen til en cøliakipasient å lage antistoffer mot transglutaminase når hun slutter å spise gluten? Det var et utmerket spørsmål.

Det passer å starte med molekylær gastronomi. Der har kunnskap om kjemiske reaksjoner gjort det mulig å lage helt nye matretter. En slik matrett er biff som består av flere typer kjøtt. Kjøttstykkene er limt sammen med «kjøttlim». Limet består av enzymet transglutaminase.

Enzymet hører med til kroppens reparasjonsmekanismer. Det kan knytte proteiner fysisk sammen, slik at det dannes en barriere mot friskt vev. Ved betennelse øker mengden transglutaminase i vevet. Pasienter med cøliaki som spiser gluten, får en kronisk betennelse i tarmen. Det betyr også at mengden transglutaminase øker i tarmveggen.

Gluten er et proteinnettverk som dannes i en hvetedeig når den eltes. Når vi spiser brød, brytes gluten ned i magesekken og tarmen. Glutenproteinene er uvanlig bygget opp. Det gjør at vi mangler enzymer i tarmen som kan fordøye gluten fullstendig til aminosyrer som transporteres over tarmveggen og inn i kroppen. Den lengste ufordøyde delen av gluten er et 33 aminosyrer langt peptid.

1. Transglutaminase (TG) og gluten bindes sammen. 2. B-celler binder TG. 3. TG-gluten taes opp av B-cellen og bindes til HLA. 4. T-celler gjenkjenner HLA+gluten og gir B-cellen hjelp. 5. B-cellen lager antistoffer mot TG

1. Transglutaminase (TG) og gluten bindes sammen. 2. B-celler binder TG. 3. TG-gluten taes opp av B-cellen og bindes til HLA. 4. T-celler gjenkjenner HLA+gluten og gir B-cellen hjelp. 5. B-cellen lager antistoffer mot TG

Sammenhengen mellom transglutaminase og cøliaki ble oppdaget da det ble klart at antistoffene mot tarmveggen som fantes hos ubehandlete pasienter, var rettet mot transglutaminase. Det viste seg at aktiviteten til dette enzymet er en nøkkel til å forstå sykdomsprosessen ved cøliaki. I tillegg til å få to proteiner til å henge sammen, kan enzymet også forandre aminosyren glutamin til aminosyren glutamat. I gluten er det uvanlig mye glutamin. Betydningen av det kommer jeg straks tilbake til.

Hos pasienter med cøliaki limes transglutaminase sammen med gluten, så det blir som et nytt protein. B-celler i tarmveggen som kan binde seg til transglutaminase, plukker opp dette nye transglutaminase-glutenproteinet. Inne i B-cellen klippes delene fra hverandre igjen, og biter av gluten blir bundet til gropa på HLA-molekyler og vist fram på overflaten av B-cellene. T-celler som kan reagere på disse HLA-peptid kompleksene vil bli aktivert, og gi B-cellene beskjed om å produsere og skille ut antistoffer. På denne måten blir det en direkte sammenheng mellom antistoff mot transglutaminase og immunreaksjon mot gluten i tarmen hos cøliakipasienter.

Når pasienter med cøliaki slutter å spise gluten, vil det ikke lenger dannes transglutaminase-glutenprotein i tarmen. B-cellene som lager transglutaminase-antistoffene vil derfor ikke lenger vise fram glutenpeptider til T-celler, og får dermed ikke den nødvendige hjelpen til å lage mer antistoffer.

Pål og Espen hadde et oppfølgingsspørsmål da jeg var kommet så langt: Det er nesten bare personer som har HLA-DQ2.5 som får cøliaki. Hvorfor er det slik? Transglutaminase binder seg ikke bare til gluten, det forandrer også mange av glutaminene i gluten til glutamat. De to aminosyrene likner hverandre, men glutamat er mer «potent», fordi den har en elektrisk ladning. Transglutaminase-behandlet gluten binder seg derfor spesielt godt til HLA-DQ2.5, men ikke til de fleste andre HLA-molekyler.

Det er morsomt med studenter som stiller spørsmål til det de har lest og hørt. Denne uken har det blitt påpekt at norske studenter er for slappe. Den største utfordringen slik jeg ser det, er at studentene ikke er nysgjerrige nok. For 16-17 år siden hadde vi ikke svarene på Pål og Espens spørsmål. Mange spørsmål i immunologien har fortsatt ikke svar. Vi trenger flere studenter som stiller spørsmål og helst også er med og leter etter svar der de fortsatt mangler.

Blogginnlegg av Anne Spurkland, publisert 23. mars 2014

Snusfornuftig

«Om man inviterer en jente på date på en restaurant, betaler man for henne da?» spurte Mats på twitter i går. Mitt umiddelbare svar var: «Nei, norske jenter betaler middagen sin selv». Kvinner skal ikke sette seg i et avhengighetsforhold til en mann allerede fra første date. Det finnes det også gode immunologiske argumenter for.

Les videre

Førerkort

I helgen så vi filmen «Spise. Sove. Dø», der tenåringen Rasja får prøveansettelse som omreisende selger. Problemet er at hun mangler førerkort. Hun klarer seg likevel fint som sjåfør, inntil sjefen spør om å få se førerkortet hennes. På vei hjem fra kinoen diskuterte vi hva som trengs for å være en god sjåfør, og ble enige om at det er hverken nødvendig eller tilstrekkelig med førerkort. Les videre

Halmstrået

Noen ganger klamrer man seg til et halmstrå, i håp om å unngå noe man ikke ønsker skal skje. Et halmstrå brekker lett, akkurat som at håpet kan være tuftet på svært sviktende grunnlag. Her er fortellingen om den gangen jeg klamret meg til et hårstrå. Det viste seg å være like skjørt som halm. Les videre

Snitter

Jeg er ikke særlig kresen og spiser stort sett alt. Men det betyr ikke at jeg ikke har preferanser. Hvis jeg kommer i en mottagelse der det serveres snitter, velger jeg helt klart de med pålegg som jeg ikke har hjemme i eget kjøleskap. På liknende måte vil immunforsvarets celler overse det kjente, det som kroppen består av, men samtidig reagere på det som er fremmed og som kan utgjøre en potensiell trussel.

Immunforsvarets T-celler har som oppgave å overvåke helsetilstanden til alle kroppens celler. Det gjelder for T-cellene å oppdage unormale celler. Slike celler kan enten være infisert med en mikrobe eller de kan ha begynt å lage unormale proteiner og dermed kunne utvikle seg til kreft. Overvåkningen baserer seg på at alle celler i kroppen er utstyrt med HLA-molekyler, som sitter i celleoverflaten og inneholder peptider, det vil si korte biter av proteiner, fra innsiden av cellen.

Alle proteiner (A-C) blir delt opp i peptider av proteasomet (P) og pumpet inn i endoplasmatisk retikulm (ER). Peptidene binder seg til HLA-molekyler og fraktes opp til overflaten via vesikler (V).

Alle proteiner (A-C) i cellen, kan bli delt opp i peptider av proteasomet (P) og pumpet inn i endoplasmatisk retikulm (ER). Peptidene binder seg til tomme HLA-molekyler og fraktes opp til overflaten via vesikler (V).  T-cellene reagerer normalt bare på fremmede peptider i gropa på HLA-molekyler.

Fra HLA-molekylets synsvinkel er det ingen forskjell på peptider fra kroppenes egne proteiner og peptider fra en virus eller bakterie. Kjemisk sett er dette samme sak. For at HLA-molekylene skal inneholde et representativt utsnitt av det som finnes inne i cellen, er cellen utstyrt med en slags «proteinkvern», som klipper opp proteiner i passe lange peptider på 8-9 aminosyrer. Denne «kverna» kalles proteasomet, og alle proteiner i cellen som er merket for resirkulering vil bli klippet opp av denne proteinkverna. Peptidene vil deretter bli pumpet inn i endoplasmatisk retikulum, som er et viktig sted for produksjon av proteiner i cellen. Endoplasmatisk retikulum er som en labyrint avgrenset av cellemembran, der nylagete HLA-molekyler henger i veggen og venter på å bli fylt med et peptid. Peptidet er nødvendig for at HLA-molekylet skal folde seg ordentlig og være stabilt. Når gropa på HLA-molekylet er fylt med et peptid, blir HLA-molekylet fraktet opp til cellens yttermembran og vrengt ut på overflaten av cellen. Slik blir peptidet synlig for immunforsvarets T-celler.

Immunologer sier gjerne at HLA-molekylet presenterer peptidet for T-cellene. Når proteasomet klipper opp alt og sikrer at alle proteiner er representert i HLA-gropene, blir det som om kokken har tatt for seg alt innholdet i kjøleskapet, og laget snitter med både hverdagslig brunost og gulost i tillegg til sjeldenheter som andelever og serranoskinke. Siden proteasomet og HLA-molekylene ikke skiller på egne og fremmede peptider, er det derfor T-cellene som må ta ansvar.

T-celler overser «brunost og gulost» og plukker selektivt snitter med uvanlig, fremmed pålegg. Denne kresenheten gjør at T-cellene reagerer hvis cellen inneholder nye proteiner, men ikke hvis HLA-molekylene bare inneholder de vanlige, kjente peptidene. Hvor har T-cellene lært å være så kresne? Det skal jeg komme tilbake til i en senere bloggpost.

Blogginnlegg av Anne Spurkland, publisert 8. januar 2013
Oppdatert 1. juni 2016

Baccalao

I fjor publiserte norske forskere kart over torskens gener i Nature, ett av verdens mest presisjefyllte tidsskrifter. Torsken er «vår», og har i århundrer gitt levebrød til folk langs hele norskekysten, inkludert min egen bestefar som eksporterte saltet, tørket torsk til Portugal og Brasil. Overraskelsen var derfor stor da forskerne så at torsken mangler gener for HLA-klasse II molekyler. Hvordan klarer torsken seg uten noe som er så viktig for immunforsvaret hos mennesker og mus?

HLA-molekyler er helt nødvendige for at T-celler skal kunne oppdage og reagere på fremmede stoffer både inne i, og rundt kroppens celler. Det finnes derfor to ulike typer HLA-molekyler, klasse I og klasse II. Klasse I molekyler presenterer peptider fra cellenes indre miljø, mens klasse II molekyler presenterer peptider fra cellenes ytre miljø.

HLA-klasse I molekyler finnes på overflaten av alle kroppens celler og er nødvendige for at T-drepecellene skal oppdage virusinfiserte celler. HLA-klasse II molekylene derimot finnes bare på antigenpresenterende celler.  Dette er celler som kan plukke opp og presentere fremmede stoffer (eller antigener) til T-hjelperceller. T-hjelperceller styrer mange av de andre immunforsvarscellene og spiller derfor en helt sentral rolle i immunforsvaret.

Makrofager og B-celler (som lesere av bloggen alt har blitt kjent med) kan fungere som antigenpresenterende celler. I tillegg er dendrittiske celler spesialisert for oppgaven. Disse cellene finnes i alle vev. De har lange utløpere i strukket i alle retninger for å fange opp mest mulig av det som skjer i vevet.

En bakterie tas opp av en antigen-presenterende celle (1), brytes ned og presenteres i gropa på HLA-klasse II molekyler (2) til T-hjelperceller (3) som aktiveres (4) og hjelper B-celler (5) med å lage antistoffer mot bakterien (6).

Når en bakterie eller et virus kommer inn i kroppen, vil mikroben etterhvert bli plukket opp av en antigenpresenterende celle, tatt inn i cellen og fordøyd til mindre bestanddeler. Men istedet for at alt blir brutt ned til de enkelte byggesteinene, vil antigenpresenterende celler ta vare på noen biter av proteinene. Disse bitene, eller peptidene, blir så lastet opp i gropa på HLA-klasse II molekyler og fraktet ut på overflaten av cellene. Forbipasserende T-hjelperceller med reseptorer som kan gjenkjenne den aktuelle kombinasjonen av HLA-molekyl og peptid, vil bli stimulert til å reagere. Etter hvert vil hjelpercellene begynne å sende ut signalstoffer, som gir beskjed til andre immunforsvarsceller (for eksempel B-cellene) om hva som trenges av videre innsats for å bli kvitt den aktuelle mikroben.

At HLA-klasse II molekyler og T-hjelperceller er viktige, blir godt illustrert av HIV/AIDS- epidemien. HIV infiserer T-hjelpercellene. Uten behandling vil T-hjelpercellene etterhvert bli borte, og pasientene vil dø av infeksjonssykdommer de normalt ville ha overlevet.

Så hvordan klarer torsken seg uten HLA-klasse II molekylene, som vi tror er en forutsetning for det sinnrike systemet med T-hjelperceller som øverste leder for store deler av immunforsvaret? Svaret vet vi ennå ikke sikkert.

I mellomtiden eksporterer vi fortsatt tørket torsk til Portugal, der den kalles baccalao. Baccalao serveres i utallige varianter, med og uten tomatsaus, og uten at noen bekymrer seg et øyeblikk for at fisken fra Norge mangler HLA-klasse II molekyler. .

Blogginnlegg av Anne Spurkland, skrevet 22.10.2012

Med rett til å drepe

Snart kommer den nye James Bond-filmen, om helten som har rett til å drepe. Det er den 25. filmen i rekken. Vi immunologer trenger ikke vente flere år mellom hver gang vi får høre nye historier om agenter som har rett til å drepe. Vi har jo T-drepecellene.

En av de store utfordringene for immunforsvaret er å oppdage om én av kroppens celler er infisert med et virus. Virus er en kjemisk informasjonspakke som kan trenge inn i celler og overta cellens maskineri for å kopiere seg selv. Disse nye virusene vil etterhvert slippes ut av cellen og kan deretter infisere nye celler. Det som i utgangspunktet var et lite problem (nemlig noen få virus og noen få virusinfiserte celler), kan derfor fort bli et uoverstigelig problem fordi det blir så store mengder nye viruspartikler og nye virusinfiserte celler å håndtere. Det er her T-cellene med rett til å drepe kommer inn i fortellingen.

Viruspeptider bindes til HLA-molekyler, bringes til celleoverflaten og gjenkjennes av T-drepeceller

En virusinfisert celle vil alltid inneholde noen virusproteiner. Noen av disse virusproteinene vil bli klippet opp i kortere biter eller peptider. Peptidene pumpes deretter inn i det celleorganet der HLA-molekylene produseres. HLA-molekylene trenger faktisk peptidene for å bli ferdig laget. Uten et peptid i gropa er HLA-molekyler ustabile og kan falle sammen som et korthus.  Når HLA-molekylene er ferdig produsert og gropa inneholder et peptid, blir de fraktet ut til celleoverflaten. Alle celler i kroppen, bortsett fra de røde blodlegemene, har HLA-molekyler på celleoverflaten. Det er cellens måte å rapportere om de siste timenes hendelser inne i cellen.

T-drepecellene patruljerer kroppen hele tiden. De sjekker alle kroppscellene de passerer. Hver av agentcellene er på spesiell utkikk etter et bestemt virus. Hvis de finner en kroppscelle som viser fram et peptid fra dette viruset, slår de til. T-drepecellen etablerer fysisk kontakt med kroppscellen. Deretter stikker den hull på den virusinfiserte cellen så den dør. Metoden er effektiv og når jobben er gjort, fortsetter T-drepecellen videre på jakt etter flere virusinfiserte celler.

Første gang vi blir infisert av et virus, er det ikke veldig mange T-celler med rett til å drepe celler som er infisert med akkurat dette viruset. Det vil derfor ta tid før alle de virusinfiserte cellene er funnet og drept. I mellomtiden har jo viruset også hatt god tid til å formere seg og skade kroppscellene.  Første gang man blir smittet med et virus, kan man derfor oppleve å bli ganske syk. Neste gang er derimot T-drepecellene bedre forberedt. De er flere og de angriper raskere. Ofte merker vi derfor ikke at vi blir infisert av samme virus på nytt. Immunforsvaret rydder unna faren før vi merker noe som helst.

Blogginnlegg skrevet av Anne Spurkland, 13.10.12

Traktkantarell

Jeg liker å plukke sopp, særlig traktkantareller. De er små, brune og lette å kjenne igjen på at stilken er gul, litt kantete og hul fra hatten og ned til roten. Og skivene under hatten strekker seg ned på stilken. Likevel har jeg de siste årene blitt mer oppmerksom når jeg plukker og renser traktkantarellene. Jeg vil ikke få med en spiss slørsopp i ren vanvare. Les videre