Yang og Yin

Yang og Yin er gamle kinesiske begreper for grunnkreftene som skaper orden i naturen og i menneskene. De to elementene utfyller hverandre gjensidig. Det finnes mange slike par av tilsynelatende motsetninger: natt og dag, hånd og hanske, nøkkel og lås. Immunologien har sin egen versjon av Yang og Yin, nemlig antistoff og antigen. Les videre

Eliteskolen

Jeg er sterk tilhenger av enhetsskolen, at alle i Norge går på den samme skolen, uansett spesielle talenter eller lærevansker. Det er mange gode grunner til det, ikke minst at de aller flinkeste får brynet seg på folk som ikke er fullt så skoleflinke og omvendt. Immunforsvarets T-celler har sin skole i thymus. Denne skolen er så langt unna den norske enhetsskolen som det er mulig å komme.

Thymus er et lite organ som ligger øverst i brystkassen, foran hjertet. På norsk kalles den brisselen og er regnet av mange som et kulinarisk høydepunkt. Immunforsvarets T-celler utdannes i thymus, og det er rett og slett derfor de heter T-celler. Utdannelsen av T-celler i thymus er ekstremt tøff. De elevene som stryker dør, enten av mangel på stimulering eller fordi de tvinges til programmert celledød.

T-cellene utdannes i thymus. De som ikke klarer å lage en fungerende reseptor dør. De som reagerer for sterkt på kroppens egne peptider bundet til HLA blir drept. Bare 5% av T-cellene overlever.

T-cellene utdannes i thymus. De som ikke klarer å lage en fungerende reseptor dør. De som har en reseptor som reagerer for sterkt på kroppens egne peptider bundet til HLA blir drept. Bare 5% av T-cellene overlever thymus og blir sendt ut i kroppen som modne T-celler. E=epitelcelle, APC=antigenpresenterende celle.

Utdannelsen foregår i to trinn, for enkelhets skyld kan vi kalle det barnetrinnet og ungdomstrinnet. T-cellene fødes i beinmargen og reiser med blodet til thymus, der de begynner på barnetrinnet. Barneskolen foregår i de ytre delene av thymus, i barken. Når de begynner på skolen, er de fortsatt umodne og har ingen reseptor på overflaten slik modne T-celler har. Det første de begynner med, er derfor å lage den ene halvdelen av T-cellereseptoren. Hvis de lykkes, går de videre og lager den andre halvparten. For hvert trinn blir forsøket testet for om reseptoren virker, altså at den både kan binde seg til HLA-molekyler og gi et signal inn i T-cellen. Når T-celleelevene har produsert en T-cellereseptor som fungerer, har de bestått barneskoleeksamen og kan fortsette videre på ungdomsskolen. Den er lokalisert til det indre av thymus, i thymusmargen.

På ungdomsskolen skal T-cellene sjekkes for om de vet forskjellen på hva som er «meg» og hva som er alt annet. I thymusmargen finnes det antigenpresenterende celler som produserer mange av kroppens ulike proteiner, og viser disse fram som peptider i gropa på HLA-molekylene til T-celleelevene. De elevene som har laget en T-cellereseptor som binder seg spesielt godt til disse peptid-HLA-molekylkombinasjonene, vil få et kraftig signal sendt inn i cellen. Signalet vil starte programmet for celledød, og cellene dør i apoptose. Bare de T-cellene som har laget T-cellereseptorer som ikke finner noe å binde seg til i thymusmargen, består eksamen. De «vet» altså forskjellen på kroppens egne proteiner og alle andre og får slippe ut i resten av kroppen.

Vi regner at bare omtrent fem prosent av alle T-cellene som starter på thymusskolen består de ulike testene og kommer ut i kroppen som modne T-celler. Alle de andre dør i forsøket på å lage en fungerende T-cellereseptor eller i kvalitetssjekken for om de reagerer på kroppens egne proteiner. Heldigvis er strykprosenten mye lavere i norsk skole, og konsekvensene for de som stryker er langt mindre dramatiske.

Blogginnlegg av Anne Spurkland, publisert 15. januar 2013

counter for wordpress

Sikkerhetskontroll

Sist jeg skulle fly var køen til sikkerhetskontrollen urovekkende lang. Likevel tok det ikke mer en drøyt 15 minutter før vi var igjennom. Vel framme ved kontrollen sprer køen seg til 10-15 gjennomlysningsstasjoner. Selv om kontrollen tar et par minutter per person, sjekkes så mange parallelt at gjennomstrømningen likevel blir ganske høy.

Også  kroppens viktigste transportsystem, blodkretsløpet, har sikkerhetskontroll, som utføres av kroppens mest mystiske organ, milten. På størrelse med en liten knyttneve ligger den til venstre i bukhulen, skjult under ribbeina. I oldtiden ble milten forbundet med melankoli, og fortsatt har det engelske ordet for milt, spleen, også betydningen å være melankolsk.

Blodet forsyner kroppen med næring og oksygen og fjerner avfallsstoffer. I tillegg transporterer blodet immunforsvarets celler og våpen slik som komplement og antistoffer. I løpet av kort tid har blodet vært innom alle delene av kroppen. En mikrobe som kommer seg inn i blodkretsløpet, og som ikke straks blir ødelagt av komplement, utgjør en stor sikkerhetsrisiko. Noen bakterier har en ekstra kappe, som gjør dem motstandsdyktige mot komplement. De spres derfor lettere med blodet enn andre bakterier.

IMG_9735

Skisse av miltens anatomiske organisering. Svarte sirkler=røde blodlegemer. Hvite sirkler=immunforsvarets B- og T-celler. M=makrofager. Milten er omgitt av en kapsel av bindevev=tykk svart strek.

For hvert hjerteslag blir 5% av blodet sendt til milten. Her fordeles det ut i tallrike miltstrenger, der sikkerhetskontrollen foregår. Miltens securitasvakter er makrofagene. De sjekker alle blodceller og fjerner dem som er merket med antistoffer eller som er gamle og stive og ikke lenger klarer å presse seg gjennom filteret og tilbake til blodbanen. I tillegg fjerner makrofagene bakterier og cellerester som kommer med blodet.

Når blodcellene er kommet seg forbi sikkerhetskontrollen, vet de like godt som flypassasjerer hvor de skal videre. De røde blodlegemene drar rett tilbake til blodsirkulasjonen. Men omtrent som reisende med gullkort, som stikker innom flyselskapenes Lounge mens de venter på å dra videre, vil immunforsvarets B- og T celler trekkes mot områder i milten der de vet at de vil treffe andre likesinnede. Her møter de også av og til aktiverte antigenpresenterende celler, og noen T-celler og B-celler vil bli stimulert til en immunrespons. Milten fungerer derfor som en slags lymfeknute i blodbanen.

Det hender at milten må fjernes på grunnn av sykdom eller skade. Det pleier å gå helt fint. Mange av miltens oppgaver kan også utføres andre steder i kroppen. Det er heller ikke så ofte vi får kapselkledde bakterier inn i blodbanen, men skulle det skje, har pasienter uten milt økt risiko for bli alvorlig syke av blodforgiftning. Så for å være på den sikre siden, blir pasienter som får fjernet milten vaksinert mot kapselkledte pneumokokker, og beskjed om raskt å kontakte lege hvis de får feber.

PS: Som alle metaforer har også denne sine svakheter: Den strenge sikkerhetskontrollen på flyplassene er mye en konsekvens av flyangrepet mot USA 11. september 2001. Milten derimot finnes hos alle virveldyr, også fisk, altså har vi hatt slik kontroll i millioner av år. Dessuten, securitasvaktene på Gardermoen nøyer seg bare med å fjerne «bakteriene». Heldigvis slipper gamle og skrøpelige flypassasjerer fortsatt gjennom kontrollen.

Blogginnlegg av Anne Spurkland, skrevet 2. desember 2012

Klon

Svigermor Ruth har grønne fingre. Hun lager genetisk like kopier av samme plante ved hjelp av stiklinger. Takket være henne har vi vinduskarmene fulle av vrifrukt, en gammeldags potteplante med nydelige, lilla blomster. Slike kopiplanter kalles kloner, etter det greske ordet for «gren». Immunforsvaret gjør også utstrakt bruk av kloning.

T- og B-cellene har reseptorer for mikrober i celleoverflaten som er tilfeldig sammensatt av noen få genmotiver. Vi har et stort antall ulike T- og B-celler som hver for seg bare kan reagere på noen svært få, bestemte mikrober. Av hver enkelt T- eller B-celle har vi i utgangspunktet bare noen helt få, i mange tilfeller kanskje bare én av hver. For at disse cellene skal kunne bidra til å bekjempe en mikrobe som er kommet inn i kroppen, må de derfor mangfoldiggjøres.

Når en T-celle gjenkjenner en mikrobe, blir den aktivert til å dele seg, så det blir mange kopier av samme celle. Når mikroben er nedkjempet, blir noen celler fra klonen igjen i kroppen som hukommelsesceller (her angitt med trekanter).

Hvis ikke det medfødte immunforsvaret klarer å bekjempe en mikrobe i løpet av de få første dagene etter en infeksjon, er kopiering av de T- og B-cellene som gjenkjenner mikroben en viktig del av immunforsvarets strategi for å fjerne mikroben. Kopieringen skjer ved at cellene deler seg mange ganger. På noen få dager kan en bestemt celle bli til flere millioner helt like celler. Immunologer kaller slik kopiering for «klonal ekspansjon», og dette fenomenet er en sentral del av det tilpassede immunforsvaret.

Når faren er over og mikroben er bekjempet, har vi ikke lenger bruk for millioner av T- og B-celler som kan reagere på akkurat den mikroben. Disse cellene blir rett og slett overflødige og kan bli et problem. Hvis de ikke fjernes, blir det kanskje ikke plass til en ny klonal ekspansjon av en annen T- eller B-celle neste gang vi blir infisert med en helt annen mikrobe. Heldigvis er både B- og T-celler som har vært brukt i aktiv tjeneste, programmert til å forlate kamparenaen når jobben er gjort. De aller fleste av dem begår kontrollert selvmord, mens noen ganske få (men flere enn før) blir værende igjen i kroppen som hukommelsesceller, i tilfelle mikroben skulle dukke opp igjen på nytt.

Det blir litt som med dagsaviser. De blir sendt ut i tallrike kopier hver morgen. De aller fleste kopiene går raskt til resirkulering. Bare noen få eksemplarer av hvert nummer blir tatt vare på i redaksjonene, i noen biblioteker og i nasjonalbibliotekets depot. De skal ligge der som bidrag til vår kollektive hukommelse. Det kan jo tenkes at noen av sakene får ny aktualitet om noen år?

Blogginnlegg skrevet av Anne Spurkland, 24. november 2012

Den lokale puben

Da jeg var liten hadde jeg stadig ørebetennelse. Jeg har ikke glemt behandlingen: det ble stukket hull på trommehinnen så pusset kunne renne ut. Men jeg husker også de hovne og ømme kulene på halsen som fulgte med.

Du har kanskje opplevd det selv også, at det dukker opp hovne og ømme kuler på halsen i forbindelse med en halsbetennelse? Etter én uke eller to forsvinner kulene igjen, og det er omtrent ingenting å kjenne i underhuden. Dette er lymfeknuter, som vokser kraftig i forbindelse med en immunreaksjon og som så går tilbake til omtrent opprinnelig størrelse når infeksjonen er slått tilbake. Hvorfor skjer det?

Lymfeknuter finnes blant annet på halsen. De er møtepunktet for immunforsvarets celler. Antigenpresenterende celler (DC) kommer dit fra vevet med lymfen. T-cellene (T) kommer dit med blodet.

For T-cellene, som hele tiden fraktes rundt i kroppen med blodet, fungerer lymfeknutene på samme måte som den lokale puben. Et sted man stikker innom hver dag og får høre nytt. Antigenpresenterende celler trekker også inn til den nærmeste, lokale lymfeknuten hvis noe har skjedd ute i vevet. Hvis det dreier seg om hals- eller ørebetennelse, er de nærmeste lymfeknutene på halsen. En antigenpresenterende celle som har nyheter om en pågående infeksjon, plasserer seg ved «bardisken» i lymfeknuten. Det vil si på et sted der alle T-cellene nødvendigvis vil komme forbi.

Når en T-hjelpercelle får høre den rette nyheten fra den antigenpresenterende cellen (i form av et fremmed peptid bundet til et HLA-molekyl), blir den værende i lymfeknuten istedet for å dra videre. T-cellen vil bli stimulert til å dele seg mange ganger. Den voldsomme celledelingen, og alle forandringene i signalstoffer som følger med, gjør at lymfeknuten øker flere ganger i størrelse. Resultatet av nyhetsformidlingen er en helt stappfull pub, altså. Ikke rart at hovne lymfeknuter kan være litt ømme å ta på.

Slutten på historien virker sørgelig, i alle fall fra perspektivet til den lokale pubeieren: Etter 1-2 uker, når faren er over, slutter puben å være i sentrum for begivenhetene. Immunreaksjonen stopper opp, og de aller fleste av de aktiverte T-cellene dør. Pubgjestene begår rett og slett selvmord. Lymfeknuten får tilbake sin opprinnelige størrelse og slutter å være en hoven kul det er lett å kjenne. Alt er imidlertid ikke som før. Noen av de aktiverte immuncellene blir værende i kroppen som hukommelsesceller, slik at neste angrep fra en mikrobe kan oppdages raskere og slås ned fortere.

Blogginnlegg av Anne Spurkland, skrevet 9. november 2012

Skreddersydd

Da jeg var 19 år, sto jeg modell på «kjole og drakt»-linjen på Rud yrkesskole. Elevene skulle lære å sy drakt. Jeg valgte flaskegrønn ull, jakke med avrundete kanter og foldeskjørt. Det ble tatt utgangspunkt i et standard mønster, og jeg prøvde drakten flere ganger underveis, slik at den skulle passe perfekt til min kropp. Akkurat slik er det med antistoffene våre også.

Immunforsvarets B-celler produserer antistoffer mot invaderende mikrober. Antistoffene lages ved å kombinere noen ganske få genmotiver på mange ulike måter. De lages etter samme mønster, selv om det er variasjoner i detaljutformingen av hvert enkelt antistoff. Akkurat slik jeg fikk drakt med mulighet for variasjon innenfor en gitt ramme.

Den første gangen en mikrobe binder seg til B-cellens reseptor, passer reseptoren som oftest ikke perfekt til mikroben. Likevel vil B-cellen bli stimulert til å dele seg og begynne å produsere antistoffer, altså reseptorer som kan skilles ut av cellen til blodet.

Antistoffer blir «skreddersydd» gjennom prøving og feiling. B-celler med reseptorer som passer brukbart til bakterien, deler seg (0.) Datterceller (1. og 2.) med reseptorer som passer bedre, får et forsprang og lager mest og best antistoffer.

En B-celle som er stimulert til å dele seg vil først bli til to celler, så til fire, åtte og så videre. Disse dattercellene vil også ha B-celle reseptorer som kan binde mikrober. Men i dattercellene vil det foregå noen tilfeldige endringer av B-celle reseptorgenet. Alle dattercellene vil derfor ha B-celle reseptorer som er litt forskjellig fra den første B-cellen. Dette fenomenet kalles «somatisk hypermutasjon«. Det likner på de gangene jeg prøvde drakten før den var ferdig. Den ble endret litt hver gang.

Så lenge mikroben er tilstede, vil de nye B-cellene også binde til mikroben. Hvis den endrete reseptoren passer bedre til mikroben, vil B-cellen få signal om å fortsette å dele seg. Hvis reseptoren derimot passer dårligere, vil B-cellen ikke få noe signal, og blir snart utkonkurrert av de B-cellene som passer bedre til mikroben. Slik blir antistoffer mot en mikrobe en kombinasjon av konfeksjonssøm og skreddersøm.

Jeg har den flaskegrønne drakten ennå. Etter mer enn tretti år passer den fortsatt, om ikke lenger perfekt. Selv om jeg veier det samme som før, er jakken blitt tydelig trangere over skuldrene. Kroppen er rett og slett blitt litt forandret. Dessverre er det ikke noe jeg kan få gjort med kroppen, og drakten kommer jeg neppe til å justere heller.

For B-cellene er det annerledes. Etter det første møtet med en mikrobe, vil noen B-celler med reseptorer som er skreddersydd for mikroben bli værende i kroppen i flere tiår. Ved neste møte med mikroben, gjerne mange år etter, er kanskje mikroben litt endret, litt «bredere over skuldrene». Da vil B-cellene på nytt bli stimulert til å dele seg og skru på «endringsmaskineriet» for B-celle reseptorene. Og i motsetning til min flaskegrønne, skreddersydde drakt som ikke lenger kan endres, vil vi på nytt få antistoffer som passer perfekt til mikroben slik den ser ut her og nå.

Blogginnlegg av Anne Spurkland, skrevet 28.10.2012

Født sånn og blitt sånn

For to dager siden skar jeg meg i fingeren mens jeg kuttet epler. Det krevde akutt fingertuppbandasje, så det ikke ble for mye søl mens jeg gjorde meg ferdig med eplene. Men det var ikke farlig eller livstruende på noen måte. Det er fordi jeg er født sånn. Når jeg heller ikke pleier å bli syk av influensa, er det fordi jeg er blitt sånn.

Immunologer deler immunforsvaret i medfødt og tilpasset. Det medfødte tar vi for gitt. Vi regner det som selvsagt at et kutt i fingeren reparerer seg selv i løpet av 4-5 dager. Det medfødte immunforsvaret, som blant annet inkluderer makrofagene, er så effektivt at det er bare helt nylig at forskerne har begynt å få detaljert innsikt i hvordan det virker. Det medfødte immunforsvaret er stort sett likt hos alle mennesker.

Det tilpassete immunforsvaret derimot er skreddersydd til meg og til det miljøet jeg har levd i. Denne delen av immunforsvaret inkluderer T- og B-celler. Det er det tilpassete immunforsvaret som gjør at jeg ikke får influensa, vannkopper, meslinger og mange andre infeksjonssykdommer jeg har hatt tidligere i livet eller som jeg er vaksinert mot. Når leger forsøker å forstå hvorfor vi blir syke av infeksjoner, eller hvorfor noen lider av kroniske betennelsessykdommer, er det tilpassete immunforsvaret i fokus. Trolig er det derfor vi har mest kunnskap om hvordan denne delen av immunforsvaret fungerer.

Inntil nylig tenkte immunologer på det medfødte og det tilpassete immunforsvaret som to atskilte størrelser som hadde lite med hverandre å gjøre. Nå vet vi at det er mye samsnakking og tildels tette forbindelser mellom de to delene av immunforsvaret. For å bruke min finger som eksempel:

Makrofager spiser «alt» (medfødt immunforsvar) og viser fram biter av mikrober de har spist til T-hjelperceller (samsnakking). Hver T- og B-celle reagerer på «bare én». De må stimuleres til å bli mange for å beskytte mot en bestemt mikrobe (tilpasset immunforsvar).

Når jeg skjærer meg i fingeren, vil det straks komme bakterier inn i såret. Skaden alene og også bakteriene vil utløse en betennelsesreaksjon. Bakteriene vil bli spist opp av makrofager, som også tilkaller andre deler av det medfødte immunforsvaret til skadestedet. Som oftest er dette nok til å fjerne bakteriene og reparere skaden. Hvis bakteriene er for mange eller er ekstra aggressive, trenger det medfødte immunforsvaret hjelp fra det tilpassete immunforsvaret. Antigenpresenterende celler fra det medfødte immunforsvaret vil stimulere T-hjelperceller slik at en immunreaksjon tilpasset den aktuelle mikroben settes i gang. Slik vil en bakterieinfeksjon etter et kutt i fingeren nesten alltid være begrenset til kuttstedet og tilhele i løpet av noen dager.

Blogginnlegg av Anne Spurkland, skrevet 25.10.12