Romjulsfeber

For første gang på flere år har jeg vært syk og hatt feber. Hele familien og mange på jobben har også vært syke, alle med feber i minst én dag og hoste over flere dager. I VG leser vi om svineinfluensa, men ingen av oss har vært  syke nok til å sjekke om det er det vi har fått. Istedet har vi brukt romjula til å reflektere rundt immunforsvarets kamp for å gjøre oss friske igjen.

Influensaviruset er et kappekledd RNA-virus. I kappen har det reseptorer som binder seg til slimproteiner i luftveiene. Det er derfor influensa fortrinnsvis infiserer overflatecellene i de øvre luftveiene. Når vi hoster eller snakker, står det en sky av virusholdige dråper rundt oss. Folk i nærheten puster inn de små dråpene, og viruset fester seg i luftveiene til den nye personen.

Både det medfødte og det tilpassete immunforsvaret blir tatt i bruk for å bekjempe influensaviruset. Hos dem som har hatt influensa før eller som er vaksinert, vil det tilpassete immunforsvaret ha hukommelse for tidligere infeksjon. Da har kroppen allerede antistoffer mot influensaviruset som kan binde og nøytralisere viruset før det rekker å trenge inn i cellene. Fra tid til annen endrer sammensetningen av influensaviruset seg såpass mye at de nøytraliserende antistoffene ikke lenger virker så godt. Da kan selv de som vanligvis holder seg friske gjennom en influensaepidemi, oppleve å bli syke.

IMG_9872

Viruset infiserer overflateceller i luftveiene. Antistoffer kan nøytralisere viruset før det kommer så langt. Proteiner i cellene (RIG) kan binde til virus-RNA og aktivere produksjon av signalstoffer (IFN eller interferon). Interferon hindrer virus i å kopiere seg og stimulerer også immunforsvaret. Interferon gir også feber og sykdomsfølelse.

Det medfødte immunforsvaret har evne til å registrere om en celle har blitt infisert med influensaviruset. Det skjer gjennom binding av virusets RNA til spesielle signalproteiner inne i cellen. Resultatet er at den virusinfiserte cellen blir endret så viruset ikke like lett blir kopiert og mangfoldiggjort. Samtidig blir det produsert signalstoffer som setter igang betennelse i luftveiene og som stimulerer antigenpresenterende celler til å reise til nærmeste lymfeknute for å aktivere det tilpassete immunforsvaret.

Det tar omtrent én uke før det tilpassete immunforsvaret har rukket å lage et effektivt forsvar mot det aktuelle influensaviruset. Først da vil den ultimate løsningen som stopper den videre spredningen av viruset og fjerner de infiserte cellene, være på plass. Man kan derfor regne med at det tar ca én uke fra de første influensasymptomene til man er mer eller mindre frisk igjen.

Hva har skjedd i mellomtiden? Mange av symptomene ved influensa skyldes det medfødte immunforsvarets forsøk på å kontrollere viruset. Feberen, muskelsmertene og luftveisproblemene, som er typisk ved influensa, skyldes i hovedsak betennelsesfremmende signalstoffer. Disse produseres av det medfødte immunforsvaret som tiltak for å begrense infeksjonen i påvente av at det tilpassete immunforsvaret skal komme til unnsetning. Noen ganger skaper dette så store problemer at pasienten trenger sykehusinnleggelse og i verste fall ikke overlever infeksjonen.

For oss andre får feberen og hosten være en påminnelse om at immunforsvaret jobber så vi skal bli friske. Det er ellers ikke alltid man får sjansen til å følge immunforsvarets anstrengelser på så nært hold, vanligvis merker vi jo ikke noe til hva som foregår.

Blogginnlegg skrevet av Anne Spurkland, 3. januar 2013

Klon

Svigermor Ruth har grønne fingre. Hun lager genetisk like kopier av samme plante ved hjelp av stiklinger. Takket være henne har vi vinduskarmene fulle av vrifrukt, en gammeldags potteplante med nydelige, lilla blomster. Slike kopiplanter kalles kloner, etter det greske ordet for «gren». Immunforsvaret gjør også utstrakt bruk av kloning.

T- og B-cellene har reseptorer for mikrober i celleoverflaten som er tilfeldig sammensatt av noen få genmotiver. Vi har et stort antall ulike T- og B-celler som hver for seg bare kan reagere på noen svært få, bestemte mikrober. Av hver enkelt T- eller B-celle har vi i utgangspunktet bare noen helt få, i mange tilfeller kanskje bare én av hver. For at disse cellene skal kunne bidra til å bekjempe en mikrobe som er kommet inn i kroppen, må de derfor mangfoldiggjøres.

Når en T-celle gjenkjenner en mikrobe, blir den aktivert til å dele seg, så det blir mange kopier av samme celle. Når mikroben er nedkjempet, blir noen celler fra klonen igjen i kroppen som hukommelsesceller (her angitt med trekanter).

Hvis ikke det medfødte immunforsvaret klarer å bekjempe en mikrobe i løpet av de få første dagene etter en infeksjon, er kopiering av de T- og B-cellene som gjenkjenner mikroben en viktig del av immunforsvarets strategi for å fjerne mikroben. Kopieringen skjer ved at cellene deler seg mange ganger. På noen få dager kan en bestemt celle bli til flere millioner helt like celler. Immunologer kaller slik kopiering for «klonal ekspansjon», og dette fenomenet er en sentral del av det tilpassede immunforsvaret.

Når faren er over og mikroben er bekjempet, har vi ikke lenger bruk for millioner av T- og B-celler som kan reagere på akkurat den mikroben. Disse cellene blir rett og slett overflødige og kan bli et problem. Hvis de ikke fjernes, blir det kanskje ikke plass til en ny klonal ekspansjon av en annen T- eller B-celle neste gang vi blir infisert med en helt annen mikrobe. Heldigvis er både B- og T-celler som har vært brukt i aktiv tjeneste, programmert til å forlate kamparenaen når jobben er gjort. De aller fleste av dem begår kontrollert selvmord, mens noen ganske få (men flere enn før) blir værende igjen i kroppen som hukommelsesceller, i tilfelle mikroben skulle dukke opp igjen på nytt.

Det blir litt som med dagsaviser. De blir sendt ut i tallrike kopier hver morgen. De aller fleste kopiene går raskt til resirkulering. Bare noen få eksemplarer av hvert nummer blir tatt vare på i redaksjonene, i noen biblioteker og i nasjonalbibliotekets depot. De skal ligge der som bidrag til vår kollektive hukommelse. Det kan jo tenkes at noen av sakene får ny aktualitet om noen år?

Blogginnlegg skrevet av Anne Spurkland, 24. november 2012

Rollespill

Den første Ringenes Herre-filmen kom samtidig som vi leste triologien høyt for ungene. Kampene mellom det gode og det onde gjorde enormt inntrykk. I årevis gav Tolkiens verk inspirasjon til rollespill, skolestiler og kunstverk. I mørke høstkvelder kjempet tolvåringene drabelige slag utstyrt med tresverd og kapper inspirert av Ringenes Herre. De skulle bare visst at liknende kamper foregikk i deres egne kropper hver dag.

Når en bakterie kommer inn i kroppen, gjelder det å få den vekk fortest mulig. Jeg har tidligere blogget om at det aller første som skjer, er at proteiner fra blodet aktiveres til å stikke hull på bakteriene. Dette gir samtidig signal til celler i blodet om at de må komme og hjelpe til.

De som kommer først er såkalte «nøytrofile granulocytter». Navnet er lite kjent selv om dette er de hvite blodlegemene vi har flest av. De kalles granulocytter fordi de inneholder tallrike, små korn (egentlig små, membrankledte blærer) med potente stoffer som kan drepe bakterier. Granulocyttene dannes i beinmargen og lever bare to-tre dager i blodet før de dør. Trolig lever de så kort for å unngå at de skader vevet unødig. Uten disse blodcellene vil vi raskt bukke under for de mest banale infeksjoner.

Granulocyttene registrerer forandringer i blodkaret (I), presser seg ut i vevet (II) , spiser en bakterien (III), dreper den (IV) og dør (V).

Granulocyttene kan «lukte seg fram» til der bakteriene befinner seg i kroppen. Akkurat som vi kan gå i retning av der en lukt er sterkest, kan granulocyttene følge et kjemisk stoff i retning mot stadig høyere konsentrasjon. Ett av stoffene som nøytrofile granulocytter tiltrekkes av, er aktivert komplement. På steder der komplement er aktivert, er også blodkarene blitt litt endret. Dette får granulocyttene til å bremse opp og trenge igjennom karveggen og ut i vevet.

På samme måte som makrofagene, som allerede er på plass i vevet, kan også granulocytter spise bakterier. De bakteriene som makrofagene i vevet ikke har klart å ta unna, tar de nøytrofile granulocyttene seg av. Etter at en granulocytt har spist en bakterie, blir den drept ved at blærene med giftig innhold blir tømt inn til bakterien. Deretter begår granulocytten kontrollert selvmord. Det er stort sett døde granulocytter og bakterier som gir slimet grønn farge når man er forkjølet, har verk i en finger eller puss i et sår.

Så av alle helteepos burde fortellingen om granulocyttene kunne kvalifisere til plass blant de fremste. Disse hvite ridderne i immunforsvarets førstelinje ofrer seg selv for at de onde (altså bakteriene) ikke skal få overtaket i kroppen. Så neste gang du tørker grønt snørr av ungen, send en vennlig tanke til granulocyttene. Takket være deres innsats  kommer ikke bakteriene lengre inn i kroppen enn til neseslimhinnen ved en vanlig forkjølelse. Om dette er fantasieggende nok til rollespill i kveldsmørket, er imidlertid en annen sak.

Blogginnlegg av Anne Spurkland, skrevet 20. november 2012

Killers’ corner

The Wire er en av de beste TV-seriene som er laget. Livet blant narkolangere, politi og politikere i Baltimore klistret vår familie foran skjermen i 60 samfulle episoder. I en tilbakevendende scene ble langere som ikke hører til på et gatehjørne skutt av noen i en forbipasserende bil. Hvordan vet de at de rette blir tatt ut?

Dette er et grunnleggende spørsmål også for immunforsvaret. Hvem hører til, hvem er fremmed? En gruppe immunceller oppfører seg som narkobaronene i «the Wire»: Kjenner jeg deg ikke, skyter jeg deg. Disse cellene kalles karakteristisk nok naturlige drepeceller, eller NK-celler og regnes som en del av det medfødte immunforsvaret. De finnes hovedsakelig i blodet, og har som en viktig oppgave å drepe alle celler som ikke sikkert gjenkjennes som egne, friske celler.

NK-celler har mange ulike reseptorer på overflaten som brukes for å sjekke andre celler. Noen av disse reseptorene gir bremsesignaler, og sier «Nei, nei», andre gir gass og sier «Ja, ja». Det som styrer beslutningen om å drepe er summen av nei og ja signaler. Omtrent som en EU-avstemning altså. Så lenge nei-siden vinner, forholder NK-cellen seg rolig. Vinner ja-siden, går NK-cellen til angrep. NK-cellereseptorer som sier «nei» gjenkjenner HLA-klasse I molekyler på celleoverflatene. Alle kroppens celler som har de kjente og kjære HLA-molekylene på overflaten vil derfor stort sett være beskyttet mot NK-celle drap. Hva «ja»-reseptorene gjenkjenner er fortsatt dårlig forstått. Uansett er ja-reseptorene alltid litt aktive. Så hvis signalet fra nei-reseptorene faller bort, er ja-signalet tilstrekkelig til at NK-cellen dreper.

NK-celler får både ja- og NEI-signaler fra andre celler. Når en celle ikke gir NEI-signaler fordi HLA-klasse I molekyler mangler, er det så suspekt at NK-cellen dreper den.

Her er et eksempel på hvordan det kan foregå: et virus som infiserer en celle, vil normalt avsløre seg ved at peptider fra virusproteinene binder seg til HLA-klasse I molekyler på cellens overflate. Dette kan T-drepecellene oppdage, for deretter å drepe den virusinfiserte cellen. Fordi det er i virusets interesse å være mest mulig usynlig for immunforsvaret, har noen virus utviklet strategier for å skjule seg ved å hindre HLA-klasse I molekylene i å komme opp på celleoverflaten. Da kan ikke T-drepecellene oppdage at cellen er virusinfisert. Men mangler HLA-molekylene, vil ikke NK-cellene få stoppsignaler gjennom nei-reseptorene. Det får i stedet NK-cellene til drepe den virusinfiserte cellen. Slik trekker likevel immunforsvaret det lengste strået i kampen mot viruset.

Det var svenske Klas Kärre som først kom med den såkalte «missing self»-hypotesen for hvem NK-cellene dreper. På den tiden var russiske ubåter i den svenske skjærgården et problem. Kärres poeng var at for den svenske kystvakten er det tilstrekkelig å se det svenske flagget. En ubåt uten svensk flagg, er pr definisjon en fremmed (russisk) ubåt. Tilsvarende er det nok for NK-cellene at HLA-molekyler mangler, eller for Baltimores narkobaroner at noen langer narko på Killer’s corner i feil hettegenser. Konsekvensen er uansett dødelig for den det gjelder.

Blogginnlegg av Anne Spurkland, skrevet 14. november 2012

Lørdagsbrus

Da jeg var barn fikk vi unger av og til en brus på deling på lørdag. Dette var før litersflaskenes tid, så det var stor vitenskap å få delt brusen likt. Den som ikke delte fikk velge først. Det var derfor viktig at de to glassene ble så like som overhodet mulig. Slik er det ikke nødvendigvis for immunforsvarets celler.

Det er umulig å snakke om hvordan immunforsvaret fungerer uten å komme inn på at celler kan dele seg. Hvordan det skjer er avgjørende for alt som har med kropp og helse å gjøre. Når en celle deler seg og blir til to nye celler, inneholder de to dattercellene en nøyaktig kopi av alt arvematerialet, hele oppskriftsboken, som fantes i morcellen. De to nye cellene kan selvsagt også dele seg, så på kort tid kan en enkelt celle bli til svært mange celler. Celledeling er derfor en prosess som er nøye regulert. Hvis en celle begynner å dele seg uten kontroll har vi fått starten på en kreftsvulst. Det kan raskt utvikle seg til å bli livstruende, fordi kreftcellene fortrenger og tar ressursene fra de friske cellene.

En celle som deler seg kan gi to like datterceller (I) som ikke alltid er lik morcellen. Hvis cellen er asymmetrisk før deling, kan dattercellene bli ulike (II). Asymmetrisk deling gjør det mulig å beholde en kopi av morcellen og samtidig få datterceller med nye egenskaper.

Selv om alle dattercellene har arvet hele oppskriftsboken, bruker de ikke nødvendigvis alle de samme oppskriftene som morcellen gjorde. Spesielt gjelder dette immunceller som blir stimulert til å dele seg i forbindelse med en infeksjon. Akkurat som våre egne barn, vokser disse dattercellene opp i et annet miljø enn vi selv. Det påvirker hvilke gener de tar i bruk, og hvordan de oppfører seg. Slik kan dattercellene bli bedre i stand til å bekjempe infeksjonen enn morcellen var, ikke bare fordi de er flere, men også fordi de er mer effektive. 

Når en celle deler seg, overtar dattercellene også alt det øvrige morcellen besto av, omtrent som når vi barn delte lørdagsbrus. Men i motsetning til oss barn, er det ikke alltid at de to dattercellene deler «brusen» helt likt. Denne skjevdelingen kan gi grunnlag for ulik utvikling av de to dattercellene, selv om omgivelsene ellers er like. En viktig forutsetning for at vi skal ha et velfungerende immunforsvar gjennom hele livet er at det alltid finnes stamceller i beinmargen som kan dele seg og gi opphav til nye immunforsvarsceller. Slike celler kan dele seg skjevt, slik at den ene dattercellen forblir lik som morcellen, mens den andre dattercellen utvikler seg videre, deler seg og gir opphav til mer spesialiserte celler.

Mange år etter at lørdagsbrus var et av ukens høydepunkt, er jeg fortsatt tilhenger av å dele godene likt. Men for immunforsvarets modne celler kan skjevdeling i noen tilfelle være mer hensiktsmessig. Nye funn tyder på at i starten av en immunrespons kan både T- og B-celler dele seg skjevt. Slik kan en dattercelle ta vare på minnet om den angripende mikroben gjennom et langt liv, mens den andre dattercellen tar opp kampen mot fienden her og nå.

Blogginnlegg av Anne Spurkland, skrevet 6. november 2012

Ballonglek

Da barna var mindre, la jeg mye arbeid i å arrangere morsomme bursdagsselskaper. Én av flere aktuelle leker var ballongleken. Den går ut på at alle får en ballong knyttet til foten. Så gjelder det å sprekke de andre sin ballong uten å få ødelagt sin egen.

Det medfødte immunforsvaret leker ballongleken hele tiden. Det gjelder å sprekke fremmede celler som kommer inn i kroppen uten å ødelegge egne celler. Barns ballonglek er egentlig en litt blek metafor. En sverm av blodtørstige mygg som stikker hull på alt er et mer passende bilde. Dette er ett av de aller eldste forsvarssystemene vi har. Det kalles komplementsystemet fordi det ble oppfattet som et tillegg til antistoffenes funksjon da det i sin tid ble oppdaget. Systemets «default»-innstilling er å lage hull i alle cellemembraner. Slike hull er like ødeleggende for en celle som et nystukket hull er for en oppblåst ballong. For at dette skal fungere, må selvsagt egne celler være beskyttet av «myggmiddel» så de ikke blir stukket, de også.

Når komplement møter en bakterie deles C3 i to. Den ene delen (C3b) fester seg til bakterien. Det starter komplementkaskaden som ender med at en gruppe C9 danner hull i lipidmembranen.

Når vi kutter oss i fingeren, er komplement det aller første forsvaret som møter bakterier som kommer inn i såret, og ofte kan det være nok til å stoppe infeksjonen. Komplementsystemet består av omtrent 20 ulike proteiner, som finnes i blodet og som hovedsakelig produseres i leveren. Komplementproteinene er normalt «sovende», men kan raskt bli «vekket» til aktivitet av hverandre. Aktivering av disse proteinene kan sammenliknes med et fyrverkeri. En liten glo kan antenne en hel kaskade av aktiverte gnister. Når komplementkaskaden settes igang, utvikler den seg omtrent så fort som en påtent nyttårsrakett, og sluttresultatet er tallrike hull i cellemembranen.

Når komplementsystemet ikke lager hull i våre egne celler, er det fordi cellene våre har effektive beskyttelsesmekanismer. Fra naturens side er det lettere å lage et robust vern mot eget komplementsystem enn å finne opp effektive systemer for å lage hull bare i fremmede celler som man ennå ikke har møtt.

At komplementsystemet er effektivt, viser erfaringene som ble gjort da man første gang forsøkte å transplantere et grisehjerte til en ape. Håpet var selvsagt at grisehjerter kunne brukes til mennesker. Men bare minutter etter at apens blodforsyningen var koblet til grisehjertet, var hjertet ødelagt og svart. En viktig grunn var at grisehjertets celler ikke hadde beskyttelse mot komplementproteinene i apens blod, og cellene ble derfor straks gjennomhullet av komplement. Håpet om å kunne bruke gris som organdonor for mennesket er ikke oppgitt, men det krever utvikling av griser som blant annet er genetisk tilpasset menneskets medfødte immunforsvar.

Som barneselskaparrangør for to barn ble jeg etterhvert god til å variere innholdet i selskapene fra år til år, uten likevel å bytte ut grunnelementene for hver gang. Ballonger kan for eksempel utnyttes på mange måter. Det er ikke alltid nødvendig å sprekke dem for å ha det gøy med dem. Slik er det med immunsystemet også. Elementer av komplementsystemet blir brukt til mer enn å lage hull, og reglene for hva startskuddet for hullene skal være, kan også variere. Dette kommer jeg nok tilbake til senere på bloggen.

Blogginnlegg av Anne Spurkland, skrevet 1.november 2012

Baccalao

I fjor publiserte norske forskere kart over torskens gener i Nature, ett av verdens mest presisjefyllte tidsskrifter. Torsken er «vår», og har i århundrer gitt levebrød til folk langs hele norskekysten, inkludert min egen bestefar som eksporterte saltet, tørket torsk til Portugal og Brasil. Overraskelsen var derfor stor da forskerne så at torsken mangler gener for HLA-klasse II molekyler. Hvordan klarer torsken seg uten noe som er så viktig for immunforsvaret hos mennesker og mus?

HLA-molekyler er helt nødvendige for at T-celler skal kunne oppdage og reagere på fremmede stoffer både inne i, og rundt kroppens celler. Det finnes derfor to ulike typer HLA-molekyler, klasse I og klasse II. Klasse I molekyler presenterer peptider fra cellenes indre miljø, mens klasse II molekyler presenterer peptider fra cellenes ytre miljø.

HLA-klasse I molekyler finnes på overflaten av alle kroppens celler og er nødvendige for at T-drepecellene skal oppdage virusinfiserte celler. HLA-klasse II molekylene derimot finnes bare på antigenpresenterende celler.  Dette er celler som kan plukke opp og presentere fremmede stoffer (eller antigener) til T-hjelperceller. T-hjelperceller styrer mange av de andre immunforsvarscellene og spiller derfor en helt sentral rolle i immunforsvaret.

Makrofager og B-celler (som lesere av bloggen alt har blitt kjent med) kan fungere som antigenpresenterende celler. I tillegg er dendrittiske celler spesialisert for oppgaven. Disse cellene finnes i alle vev. De har lange utløpere i strukket i alle retninger for å fange opp mest mulig av det som skjer i vevet.

En bakterie tas opp av en antigen-presenterende celle (1), brytes ned og presenteres i gropa på HLA-klasse II molekyler (2) til T-hjelperceller (3) som aktiveres (4) og hjelper B-celler (5) med å lage antistoffer mot bakterien (6).

Når en bakterie eller et virus kommer inn i kroppen, vil mikroben etterhvert bli plukket opp av en antigenpresenterende celle, tatt inn i cellen og fordøyd til mindre bestanddeler. Men istedet for at alt blir brutt ned til de enkelte byggesteinene, vil antigenpresenterende celler ta vare på noen biter av proteinene. Disse bitene, eller peptidene, blir så lastet opp i gropa på HLA-klasse II molekyler og fraktet ut på overflaten av cellene. Forbipasserende T-hjelperceller med reseptorer som kan gjenkjenne den aktuelle kombinasjonen av HLA-molekyl og peptid, vil bli stimulert til å reagere. Etter hvert vil hjelpercellene begynne å sende ut signalstoffer, som gir beskjed til andre immunforsvarsceller (for eksempel B-cellene) om hva som trenges av videre innsats for å bli kvitt den aktuelle mikroben.

At HLA-klasse II molekyler og T-hjelperceller er viktige, blir godt illustrert av HIV/AIDS- epidemien. HIV infiserer T-hjelpercellene. Uten behandling vil T-hjelpercellene etterhvert bli borte, og pasientene vil dø av infeksjonssykdommer de normalt ville ha overlevet.

Så hvordan klarer torsken seg uten HLA-klasse II molekylene, som vi tror er en forutsetning for det sinnrike systemet med T-hjelperceller som øverste leder for store deler av immunforsvaret? Svaret vet vi ennå ikke sikkert.

I mellomtiden eksporterer vi fortsatt tørket torsk til Portugal, der den kalles baccalao. Baccalao serveres i utallige varianter, med og uten tomatsaus, og uten at noen bekymrer seg et øyeblikk for at fisken fra Norge mangler HLA-klasse II molekyler. .

Blogginnlegg av Anne Spurkland, skrevet 22.10.2012

Nellikappelsin

Noe av det koseligste jeg vet før jul er å lage nellikappelsiner. De lukter godt av nellik og appelsin. De er lette å lage, også for dem med mindre veltrent finmotorikk. Og de oransje kulene med brune prikker ser pene ut der de henger i vinduet. De minner faktisk litt om viruspartikler.

Virus består av et skall bygget opp av noen få ulike proteiner, som til gjengeld er brukt igjen og igjen, akkurat som nellikspikrene i appelsinskallet. Gjemt inne i skallet finnes virusets genmateriale. Ved å binde seg til overflaten på en kroppscelle kan viruset tømme genmaterialet sitt inn i cellen og få laget nye viruspartikler.

Selv om vi har immunforsvarets drepeceller som kan oppdage og fjerne virusinfiserte kroppsceller, er det også viktig så sant det er mulig, å hindre viruset i å trenge inn i kroppscellene i første omgang. Oppgaven er ikke triviell, siden det på forhånd ikke er kjent hvordan viruset vil se ut. Det er rett og slett et hav av mulige virusproteiner vi må kunne forsvare oss mot.

Virus stimulerer B-celler til produksjon av antistoffer. Antistoffer nøytraliserer virus ved å danne immunkomplekser.

Det er her immunforsvarets tippeselskap kommer til sin rett. Ved å tilfeldig kombinere noen få genmotiver på mange ulike måter, blir kroppen utstyrt med flere millioner ulike B-celler som hver har en bestemt reseptor. Noen få av disse B-cellene har reseptorer som kan binde seg til «nellikspikrene» i en bestemt viruspartikkel. B-celler som har bundet seg til et virus, vil bli stimulert til å dele seg og etter hvert produsere reseptorer som skilles ut til blodet. Det er slike frie reseptorer som kalles antistoffer. «Nellikspikrene» som antistoffene kan binde seg til kalles «antigener».

Og nå kommer et poeng som jeg synes er utrolig stilig. Antistoffer består av to helt like armer som kan binde antigener. Armene er bundet sammen av en felles del, som i all hovedsak er lik for alle antistoffer. Når et antistoff binder seg til en viruspartikkel, kan begge armene binde seg til hver sin «nellikspiker» på samme virus. Men like gjerne kan den ene armen av et antistoff binde seg til en viruspartikkel og den andre armen til en annen viruspartikkel. Slik kan det dannes en stor «klump» av viruspartikler og antistoffer. Viruspartiklene er nøytralisert, og klarer ikke å infisere kroppscellene lenger. Og siden hele klumpen er dekket av antistoffer kan den bli gjenkjent og spist opp av makrofager.

Og voila, viruset er nesten eliminert. De få som slipper unna og likevel infiserer kroppscellene tar drepecellene seg av.

PS Akkurat på samme måte som for drepecellene, tar det dessverre flere dager før B-cellene har rukket å dele seg og lage tilstrekkelig med antistoffer for å nøytralisere et invaderende virus. Så første gang man blir infisert av et bestemt virus vil man kunne bli ganske syk før immunforsvaret får situasjonen under kontroll. Neste gang samme virus prøver seg, har vi både antistoffer og drepeceller klare, og ofte merker vi derfor ikke at vi er blitt infisert på nytt, så raskt blir viruset eliminert.

Blogginnlegg av Anne Spurkland, 20. oktober 2012

Med rett til å drepe

Snart kommer den nye James Bond-filmen, om helten som har rett til å drepe. Det er den 25. filmen i rekken. Vi immunologer trenger ikke vente flere år mellom hver gang vi får høre nye historier om agenter som har rett til å drepe. Vi har jo T-drepecellene.

En av de store utfordringene for immunforsvaret er å oppdage om én av kroppens celler er infisert med et virus. Virus er en kjemisk informasjonspakke som kan trenge inn i celler og overta cellens maskineri for å kopiere seg selv. Disse nye virusene vil etterhvert slippes ut av cellen og kan deretter infisere nye celler. Det som i utgangspunktet var et lite problem (nemlig noen få virus og noen få virusinfiserte celler), kan derfor fort bli et uoverstigelig problem fordi det blir så store mengder nye viruspartikler og nye virusinfiserte celler å håndtere. Det er her T-cellene med rett til å drepe kommer inn i fortellingen.

Viruspeptider bindes til HLA-molekyler, bringes til celleoverflaten og gjenkjennes av T-drepeceller

En virusinfisert celle vil alltid inneholde noen virusproteiner. Noen av disse virusproteinene vil bli klippet opp i kortere biter eller peptider. Peptidene pumpes deretter inn i det celleorganet der HLA-molekylene produseres. HLA-molekylene trenger faktisk peptidene for å bli ferdig laget. Uten et peptid i gropa er HLA-molekyler ustabile og kan falle sammen som et korthus.  Når HLA-molekylene er ferdig produsert og gropa inneholder et peptid, blir de fraktet ut til celleoverflaten. Alle celler i kroppen, bortsett fra de røde blodlegemene, har HLA-molekyler på celleoverflaten. Det er cellens måte å rapportere om de siste timenes hendelser inne i cellen.

T-drepecellene patruljerer kroppen hele tiden. De sjekker alle kroppscellene de passerer. Hver av agentcellene er på spesiell utkikk etter et bestemt virus. Hvis de finner en kroppscelle som viser fram et peptid fra dette viruset, slår de til. T-drepecellen etablerer fysisk kontakt med kroppscellen. Deretter stikker den hull på den virusinfiserte cellen så den dør. Metoden er effektiv og når jobben er gjort, fortsetter T-drepecellen videre på jakt etter flere virusinfiserte celler.

Første gang vi blir infisert av et virus, er det ikke veldig mange T-celler med rett til å drepe celler som er infisert med akkurat dette viruset. Det vil derfor ta tid før alle de virusinfiserte cellene er funnet og drept. I mellomtiden har jo viruset også hatt god tid til å formere seg og skade kroppscellene.  Første gang man blir smittet med et virus, kan man derfor oppleve å bli ganske syk. Neste gang er derimot T-drepecellene bedre forberedt. De er flere og de angriper raskere. Ofte merker vi derfor ikke at vi blir infisert av samme virus på nytt. Immunforsvaret rydder unna faren før vi merker noe som helst.

Blogginnlegg skrevet av Anne Spurkland, 13.10.12

Hamarpålegg

Selv om jeg er altetende, må jeg ha meierismør på brødskiven, ellers mister jeg matlysten. På samme måte er Hamarpålegg i følge Nestléreklamen en effektiv hjelp for å få ungene til å spise brødskiver. Makrofagene har det litt på samme måte, de spiser alt, men det hjelper hvis en bakterie er dekket med HaPå. Da går det mye fortere unna.

Det er antistoffene, ett av immunforsvarets viktigste angrepsvåpen, som fungerer som «HaPå» for makrofagene. Antistoffene lages av B-cellene og er helt like B-cellenes immunreseptorer, bortsett fra at de ikke sitter fast i cellemembranen lenger. I stedet skilles de ut fra B-cellene og sprestil hele kroppen via blodbanen.

Hvert antistoff binder seg spesielt godt til én bestemt bakterie. Den første gangen en bakterie kommer inn i kroppen, er det få antistoffer mot bakterien.

Som oftest finnes det likevel noen B-celler som har en reseptor som kan binde seg til bakterien. Dette vil stimulere B-cellene til å skille ut mer og etterhvert faktisk også bedre antistoffer (hvordan det skjer, skal jeg komme tilbake til en annen gang).

Neste gang samme bakterie dukker opp, vil kroppen derfor være godt forberedt. Bakterien blir raskt dekket av antistoffer, makrofagene får økt appetitt og spiser opp bakterien før den rekker å gjøre særlig mye skade. På kort tid er forhåpentligvis bakterien bekjempet og faren er over.

Makrofagene (Mø) får bedre appetitt når bakteriene er dekket med antistoffer!

Makrofagene liker bakterier med «HaPå» veldig godt fordi de har noen spesielle Fc-reseptorer i cellemembranen som binder seg til antistoffene på bakterien.

Disse reseptorene virker nærmest som en slags fangarmer. Signalene fra disse armene sørger for at makrofagene spiser opp «maten» sin.

Så neste gang du skal lokke indianerungene til å spise ved hjelp av HaPå, kan du jo tilby å «opsonisere» brødskivene for dem. For det er det dette fenomenet kalles når det gjelder antistoffer og makrofager.

Blogginnlegg av Anne Spurkland, 20.9.12
Sist endret 5. mars 2016
English version here.