Den lokale puben

Da jeg var liten hadde jeg stadig ørebetennelse. Jeg har ikke glemt behandlingen: det ble stukket hull på trommehinnen så pusset kunne renne ut. Men jeg husker også de hovne og ømme kulene på halsen som fulgte med.

Du har kanskje opplevd det selv også, at det dukker opp hovne og ømme kuler på halsen i forbindelse med en halsbetennelse? Etter én uke eller to forsvinner kulene igjen, og det er omtrent ingenting å kjenne i underhuden. Dette er lymfeknuter, som vokser kraftig i forbindelse med en immunreaksjon og som så går tilbake til omtrent opprinnelig størrelse når infeksjonen er slått tilbake. Hvorfor skjer det?

Lymfeknuter finnes blant annet på halsen. De er møtepunktet for immunforsvarets celler. Antigenpresenterende celler (DC) kommer dit fra vevet med lymfen. T-cellene (T) kommer dit med blodet.

For T-cellene, som hele tiden fraktes rundt i kroppen med blodet, fungerer lymfeknutene på samme måte som den lokale puben. Et sted man stikker innom hver dag og får høre nytt. Antigenpresenterende celler trekker også inn til den nærmeste, lokale lymfeknuten hvis noe har skjedd ute i vevet. Hvis det dreier seg om hals- eller ørebetennelse, er de nærmeste lymfeknutene på halsen. En antigenpresenterende celle som har nyheter om en pågående infeksjon, plasserer seg ved «bardisken» i lymfeknuten. Det vil si på et sted der alle T-cellene nødvendigvis vil komme forbi.

Når en T-hjelpercelle får høre den rette nyheten fra den antigenpresenterende cellen (i form av et fremmed peptid bundet til et HLA-molekyl), blir den værende i lymfeknuten istedet for å dra videre. T-cellen vil bli stimulert til å dele seg mange ganger. Den voldsomme celledelingen, og alle forandringene i signalstoffer som følger med, gjør at lymfeknuten øker flere ganger i størrelse. Resultatet av nyhetsformidlingen er en helt stappfull pub, altså. Ikke rart at hovne lymfeknuter kan være litt ømme å ta på.

Slutten på historien virker sørgelig, i alle fall fra perspektivet til den lokale pubeieren: Etter 1-2 uker, når faren er over, slutter puben å være i sentrum for begivenhetene. Immunreaksjonen stopper opp, og de aller fleste av de aktiverte T-cellene dør. Pubgjestene begår rett og slett selvmord. Lymfeknuten får tilbake sin opprinnelige størrelse og slutter å være en hoven kul det er lett å kjenne. Alt er imidlertid ikke som før. Noen av de aktiverte immuncellene blir værende i kroppen som hukommelsesceller, slik at neste angrep fra en mikrobe kan oppdages raskere og slås ned fortere.

Blogginnlegg av Anne Spurkland, skrevet 9. november 2012

Skreddersydd

Da jeg var 19 år, sto jeg modell på «kjole og drakt»-linjen på Rud yrkesskole. Elevene skulle lære å sy drakt. Jeg valgte flaskegrønn ull, jakke med avrundete kanter og foldeskjørt. Det ble tatt utgangspunkt i et standard mønster, og jeg prøvde drakten flere ganger underveis, slik at den skulle passe perfekt til min kropp. Akkurat slik er det med antistoffene våre også.

Immunforsvarets B-celler produserer antistoffer mot invaderende mikrober. Antistoffene lages ved å kombinere noen ganske få genmotiver på mange ulike måter. De lages etter samme mønster, selv om det er variasjoner i detaljutformingen av hvert enkelt antistoff. Akkurat slik jeg fikk drakt med mulighet for variasjon innenfor en gitt ramme.

Den første gangen en mikrobe binder seg til B-cellens reseptor, passer reseptoren som oftest ikke perfekt til mikroben. Likevel vil B-cellen bli stimulert til å dele seg og begynne å produsere antistoffer, altså reseptorer som kan skilles ut av cellen til blodet.

Antistoffer blir «skreddersydd» gjennom prøving og feiling. B-celler med reseptorer som passer brukbart til bakterien, deler seg (0.) Datterceller (1. og 2.) med reseptorer som passer bedre, får et forsprang og lager mest og best antistoffer.

En B-celle som er stimulert til å dele seg vil først bli til to celler, så til fire, åtte og så videre. Disse dattercellene vil også ha B-celle reseptorer som kan binde mikrober. Men i dattercellene vil det foregå noen tilfeldige endringer av B-celle reseptorgenet. Alle dattercellene vil derfor ha B-celle reseptorer som er litt forskjellig fra den første B-cellen. Dette fenomenet kalles «somatisk hypermutasjon«. Det likner på de gangene jeg prøvde drakten før den var ferdig. Den ble endret litt hver gang.

Så lenge mikroben er tilstede, vil de nye B-cellene også binde til mikroben. Hvis den endrete reseptoren passer bedre til mikroben, vil B-cellen få signal om å fortsette å dele seg. Hvis reseptoren derimot passer dårligere, vil B-cellen ikke få noe signal, og blir snart utkonkurrert av de B-cellene som passer bedre til mikroben. Slik blir antistoffer mot en mikrobe en kombinasjon av konfeksjonssøm og skreddersøm.

Jeg har den flaskegrønne drakten ennå. Etter mer enn tretti år passer den fortsatt, om ikke lenger perfekt. Selv om jeg veier det samme som før, er jakken blitt tydelig trangere over skuldrene. Kroppen er rett og slett blitt litt forandret. Dessverre er det ikke noe jeg kan få gjort med kroppen, og drakten kommer jeg neppe til å justere heller.

For B-cellene er det annerledes. Etter det første møtet med en mikrobe, vil noen B-celler med reseptorer som er skreddersydd for mikroben bli værende i kroppen i flere tiår. Ved neste møte med mikroben, gjerne mange år etter, er kanskje mikroben litt endret, litt «bredere over skuldrene». Da vil B-cellene på nytt bli stimulert til å dele seg og skru på «endringsmaskineriet» for B-celle reseptorene. Og i motsetning til min flaskegrønne, skreddersydde drakt som ikke lenger kan endres, vil vi på nytt få antistoffer som passer perfekt til mikroben slik den ser ut her og nå.

Blogginnlegg av Anne Spurkland, skrevet 28.10.2012

Hamarpålegg

Selv om jeg er altetende, må jeg ha meierismør på brødskiven, ellers mister jeg matlysten. På samme måte er Hamarpålegg i følge Nestléreklamen en effektiv hjelp for å få ungene til å spise brødskiver. Makrofagene har det litt på samme måte, de spiser alt, men det hjelper hvis en bakterie er dekket med HaPå. Da går det mye fortere unna.

Det er antistoffene, ett av immunforsvarets viktigste angrepsvåpen, som fungerer som «HaPå» for makrofagene. Antistoffene lages av B-cellene og er helt like B-cellenes immunreseptorer, bortsett fra at de ikke sitter fast i cellemembranen lenger. I stedet skilles de ut fra B-cellene og sprestil hele kroppen via blodbanen.

Hvert antistoff binder seg spesielt godt til én bestemt bakterie. Den første gangen en bakterie kommer inn i kroppen, er det få antistoffer mot bakterien.

Som oftest finnes det likevel noen B-celler som har en reseptor som kan binde seg til bakterien. Dette vil stimulere B-cellene til å skille ut mer og etterhvert faktisk også bedre antistoffer (hvordan det skjer, skal jeg komme tilbake til en annen gang).

Neste gang samme bakterie dukker opp, vil kroppen derfor være godt forberedt. Bakterien blir raskt dekket av antistoffer, makrofagene får økt appetitt og spiser opp bakterien før den rekker å gjøre særlig mye skade. På kort tid er forhåpentligvis bakterien bekjempet og faren er over.

Makrofagene (Mø) får bedre appetitt når bakteriene er dekket med antistoffer!

Makrofagene liker bakterier med «HaPå» veldig godt fordi de har noen spesielle Fc-reseptorer i cellemembranen som binder seg til antistoffene på bakterien.

Disse reseptorene virker nærmest som en slags fangarmer. Signalene fra disse armene sørger for at makrofagene spiser opp «maten» sin.

Så neste gang du skal lokke indianerungene til å spise ved hjelp av HaPå, kan du jo tilby å «opsonisere» brødskivene for dem. For det er det dette fenomenet kalles når det gjelder antistoffer og makrofager.

Blogginnlegg av Anne Spurkland, 20.9.12
Sist endret 5. mars 2016
English version here.

Tippeselskapet

Jeg husker fortsatt skuffelsen da det i 2002 ble klart at mennesket ikke hadde mer enn 25 000 gener, omtrent like mange gener som en mus! Og med dette svært begrensete antall gener skal vi i tillegg til alt annet også klare å forsvare oss mot alle mulige ukjente inntrengere?

Immunceller må reagere på en hel rekke trusler som vi ennå ikke har opplevd. Det er umulig å vite på forhånd hva som skal komme, bortsett fra at det er forskjellig fra kroppen selv. Mulighetene er nærmest uendelige, så det er nesten helt usannsynlig at en enkelt hendelse vi kan ha forberedt oss på kommer til å skje.

Hva er det ellers som er uendelig lite sannsynlig, og som likevel av og til en sjelden gang er mulig å oppnå? Riktig gjettet: å vinne i Lotto. Istedet for at kroppen har utstyrt seg med et stort antall gener som kanskje, men bare kanskje vil komme til nytte, er det utviklet et slags tippeselskap for immungener. Tippeselskapet tilbyr spill (VDJ rekombinering) både for T-celler og B-celler og spillereglene er ganske like:

Tilfeldighetenes spill gir oss mange ulike immunreseptorer fra et lite antall genelementer

Basert på rene tilfeldigheter lager hver «wannabe» B- eller T-celle en reseptor som skal sitte på utsiden av cellen, og som består av to deler. Hver av delene er omtrent som en lottokupong, der fire genelementer (V, D, J og C) trekkes fra en begrenset samling av liknende genelementer og settes sammen med noen få tilfeldige «ekstratall». Tilsammen gir disse lottorekkene et svært stort antall forskjellige reseptorer skåret over samme lest. Men hver immuncelle får bare to lottokuponger og dermed en reseptor utlevert. T-celler og B-celler spiller ikke med de samme lottokupongene, og det gjør at reseptorene deres kan fylle ulike funksjoner.

Immunreseptorene på B- og T-celler har en oppbygning som gjør at de kan binde seg til andre molekyler mer eller mindre sterkt. Hvis bindingen er veldig sterk, utgjør det startskuddet for en immunrespons som har som mål å fjerne det som utløste responsen. Vi vil jo helst ikke fjerne kroppen selv, så det trenges mekanismer for å ta ut immunceller med immunreseptorer som binder sterkt til kroppens egne bestanddeler. Hvordan dette skjer skal jeg kommer tilbake til på bloggen ved en senere anledning.

Blogginnlegg av Anne Spurkland, 18.09.12

Et hav av farer

Kroppen møter hele tiden mikrober som utgjør en mulig eller virkelig trussel mot kroppens overlevelse. Utfordringen for immunforsvaret er å oppdage enhver mulig trussel mot kroppen, uansett hvordan den ser ut og hvilken form den har. Så hva er det immunforsvaret reagerer på?

Proteinenes byggesteiner kan settes sammen på en nesten uendelig antall måter. Kroppen bruker bare noen få av dem.

Både kroppen og mikrobene er bygget opp av proteiner, karbohydrater og fett. Av disse tre byggematerialene er det i særklasse proteinene som er de mest varierte. Et protein består av en kjede av sammenhektede byggesteiner, eller  aminosyrer. Rekkefølgen på aminosyrene bestemmer proteinets egenskaper. Hvordan proteinene i kroppen skal være bestemmes av genene våre. Siden vi har et begrenset antall gener, er også kroppen bygget opp av et begrenset antall proteiner.

Mikrobene vi møter er stort sett bygget opp av helt andre proteiner enn dem som finnes i kroppen. Det er 20 ulike aminosyrer som blir brukt både i kroppen og av mikrobene. De kan settes sammen i en hvilken som helst rekkefølge, i kjeder som bestå av noen få til flere tusen aminosyrer. Det er derfor et hav av mulige fremmede proteiner som immunforsvaret skal kunne oppdage og reagere på.

En del av løsningen på denne utfordringen ligger i HLA-molekylenes oppbygning og funksjon. Disse molekylene har en fordypning på overflaten, der det er plass til å binde en kort proteinfragment, et peptid på 8-9 aminosyrer. Peptidet kan komme fra kroppens egne proteiner eller fra proteinene til en mikrobe. HLA-molekylene finnes på alle kroppens celler og har som funksjon å vise fram peptider fra proteiner som finnes inne i cellene. Immunforsvarets T-celler sjekker hele tiden innholdet i HLA-molekylene. Så lenge det bare er peptider fra kroppens egne proteiner i cellene, vil T-cellene forholde seg rolig. Men hvis det dukker opp et peptid fra en mikrobe i et HLA-molekyl, er det nok til at T-cellene reagerer. Det vil sette igang en immunreaksjon som har som mål å fjerne eller uskadeliggjøre mikroben.

Blogginnlegg av Anne Spurkland, 8.9.12